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A method involving Fourier series is given by which interatomic force constants can be systematically 
derived from measured phonon frequencies and eigenvectors. The resolution in wave-vector at which the 
measurements must be made is related to the range of the force constants. In agreement with recent 
work by Leigh, Szigeti & Tewary, it is concluded that when the eigenvectors are not known there is 
no unique solution for the force constants. This is illustrated by a simple numerical example. 

Introduction 

The frequency of any normal vibration mode of a crystal 
can be directly determined by neutron spectroscopy. 
Although in principle the eigenvectors (polarization 
properties) of the mode can, in certain circumstances, 
be determined from the neutron-scattering cross sec- 
tion, in practice only the phonon frequencies are usually 
known at the conclusion of an experiment. (The re- 
cent work of Harada, Axe & Shirane, 1971, provides an 
exception to this rule, however.) Recently, Leigh, Szigeti 
& Tewary (1971) have considered whether the interatom- 
ic force constants are uniquely determined when only 
frequencies are known. They showed that application 
of a unitary transformation to the force-constant matrix 
of the crystal may alter individual force constants com- 
pletely, while leaving them physically acceptable in the 
sense of satisfying symmetry conditions etc. and leav- 
ing the frequencies of the normal modes unchanged. 
Thus, an infinite number of sets of force constants give 
the same frequencies, although each gives the modes 
distinct polarization properties. This lack of unique- 
ness, they argued, shows itself in that the number of 
'essentially independent' frequencies n~o is in general 
less than the number of force constants nf to be deter- 
mined. In this paper we consider the same problem 
using a different approach. Specifically, we wish to 
show that more insight is gained by considering the 
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dynamical matrix (in reciprocal space) and transfor- 
mations thereof. Our conclusions are in general agree- 
ment with those of Leigh et al. 

The Fourier series method 

We begin by considering a monatomic one-dimensional 
crystal. This is not a completely unrealistic example, 
since planes of atoms in a monatomic crystal such as 
lead behave like individual masses of the linear chain 
for modes propagating in certain symmetry directions. 
The frequency o)(q) of a mode of wave-vector q is 
given by 

mcoZ(q) = 2 ~ f~(1 - c o s p q a ) ,  (1) 
p=l 

wherefp is the force constant between atoms separated 
by a distance pa; therefore the force constants can 
be determined by Fourier analysis (Foreman & Lomer, 
1957): 

f ~ =  _ ma l~/ao)2(q) cos pqa dq . (2) 
7~ ,JO 

There is no lack of uniqueness here because the eigen- 
vector of each mode is fixed by symmetry to be a unit 
vector in the transverse or longitudinal direction - for 
definiteness we take fp to refer to longitudinal modes. 
The form of equation (2) suggests that o)(q) has to be 
known as a continuous function before the force con- 
stants can be determined. If, however, it is known that 
fp = 0 for p > n, equation (2) can be replaced by 
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m 
f~= -- - -  ~ co2(qj)cospqja , (3) 

/'/ j = 0  

where qj = z~j. Since co2(q) andf(r)  are related as Fou- 
na 

rier transforms, sampling of o92(q) at an interval zc 
na 

in q corresponds to repetition off(r )  with spacing 2ha 
in r (e.g. Lipson & Cochran, 1966). This, however, causes 
no overlap of the centrosymmetric functionf(r) iff(r) = 
0 beyond r=na, and equation (3) is an exact result. 
Thus, in this instance only n equally spaced frequencies 
need to be known to determine n force constants which 
are confined to a range d=  na. Conversely, if for exper- 
imental reasons the frequency cannot be measured with 
higher resolution than ~/d in q, but force constants 
extend to a distance d ' >  d in r, equation (3) will give 
correctly the first (2d-A')/a force constants; the remain- 
der will in general be given incorrectly. 

Next, we consider a diatomic linear chain of masses 
alternately ml and m2, each being at a centre of sym- 
metry. It is then readily shown that the squares of the 
acoustic and optic mode frequencies, oaa(q) and o~b(q) 
respectively, are the eigenvalues of the dynamical 
matrix D(q) with corresponding eigenvectors [ea(1 [q), 
ea(21q)] and [e0(llq), eb(2[q)]: In terms of force con- 
stants, 

{D(ll lq) D(121q)] 
D(q)=\D(12lq) D(22]q)], (4) 

where 

D ( l l [ q ) =  ~ f~( l l ) (1-cospqa)+ (12) 

D(22]q)= ~22 fv(22)(l-c°spqa)+ ~ fp(12) 
p = 0  

and 
o o  

2 ~ fv(12) cos (p + ½)qa. 
D(12[q)= (mlm2) ~ p=0 (5) 

For example, fp(12) is the force constant between un- 
like atoms that are in unit cells separated by pa. 
Clearly, if D(l l lq) ,  D(22]q) and D(12lq) are known 
at an interval n/d in q, the force constants can be un- 
iquely determined by the Fourier series method already 
outlined, assuming they are confined to a range d. 
If only the eigenvalues OOaZ(q) and og~,(q) are known, how- 
ever closely, there is no unique solution. We define the 
eigenvalue matrix co2(q) and the eigenvector matrix 
e(q) as follows: 

°2(q) = (~  az(q) c_o~(q~) (6) 

e(q)=(ea(llq) e~(l[q) 1 

\ea(2[q) eb(2lq)] 
_{e(q) - [ 1 -  e2(q) ~) 
--~[1-eZ(q)] ~ e(q) . (7) 

Note that because of the orthogonality and orthonor- 
reality of the eigenvectors only one quantity e(q) is 
required to specify them for each value of q. From the 
relation 

e(q)o~2(q)- - D(q)e(q), 

we then have 

D(q)=e(q)o~2(q)~.(q) . (8) 

This equation could be used to determine the elements 
of the dynamical matrix and hence the force constants 
when all three of co~(q), ogbZ(q) and e(q) had been deter- 
mined experimentally for the appropriate values of q. 

Symmetry considerations fix the values of e(q) at 
q=  0 and rc/a, namely 

e2(0)_ ml and e(rc/a)= 1 . (9) 
ml + m2 

Let e'(q) be any continuous function having ]e'(q)[ < 1 
and which takes the values given by equation (9) at 
q = 0  and z~/a. The corresponding matrix e'(q) [see 
equation (7)] gives a possible set of eigenvectors and 
the relation 

D'(q)=e'(q)oZ(q)~'(q) (10) 

defines a new dynamical matrix which for all values of q 
has precisely the same eigenvalues as has D(q). Fourier 
analysis of the elements of D'(q) gives the correspond- 
ing force constants hwich will generally have a dif- 
ferent range from those corresponding to D(q). Note 
that if the range of force constants is d=  na there are 
3n independent force constants (n each of type 11, 22, 
and 12) with n~=2n frequencies and ne=n values of 
e(q) required, so that 

nf=n~o+ne . (11) 

Leigh et aL do not consider ne but emphasize the fact 
that ny-no~ is of the same order of magnitude as nl. 
Equation (11) also holds for the monatomic linear crys- 
tal considered earlier since then ne = O. 

It is instructive to consider a numerical example, 
constructed so that Fourier analysis is required to give 
the force constants between unlike atoms only. Sup- 
pose the correct result is that there is only one nonzero 
force constant f0(12) (abbreviated f0) so that only near- 
est neighbours interact. Then: 

2 2 
D ( l l l q ) =  ~11J%, D (221q)= ~22fo, D(121q) 

2 
- -  (mlm2) ½ f0COS ½qa. (12) 

Frequencies oga (q) and oab(q) were evaluated for m x  = 2 ,  

m2 = 1, f0 = 1. A new set of force constants was now 
constructed by taking 

D'(11]q) = fo+ ~ f  (1 -cos2qa)  

2 2 , 
D'(22]q) = _---fo- _---_f ( 1 - c o s  2qa). (13) 

m 2  m l  

A C 27A - 4 
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This leaves D'(ll[q)+D'(221q) equal to D ( l l l q ) +  
D(221q) which is a necessary condition, and w i t h f ' = ½  
corresponds to the introduction of force constants 
f £ ( l l ) = ½  and f£ (22 )= -¼,  comparable in magnitude 
with J~= 1. D'(121q) is then determined by the condi- 
tion that the determinants of D'(q) and D(q) must be 
equal. It follows that 

D'(12lq) = - 1/2 cos ½qa (1 +2cos 2 qa sin 2 ½qa) ~' . (14) 

This function was put in the form of equation (5) by 
numerical Fourier analysis; values off'p(12) are shown 
in Table 1 and were not evaluated beyond p = 7. The 
functions e(q) and e'(q) are compared in Fig. 1. The 
two sets of force constants given in Table 1 correspon- 
ded to the same frequencies. This was checked by re- 
calculating the frequencies; they were unchanged within 
0.01% except near q = 0  in the acoustic branch where 
the difference was ~ 1%, reflecting the sensitivity of 
the 'elastic region' to the very small force constants 
f~(12) for p > 7. In fact, setting, f 'p(12) equal to zero for 
p > 3 gives frequencies which in practice would be re- 
garded as agreeing with the original frequencies well 
within experimental error, except in the elastic region. 
It is interesting that although the force constants 
between like atoms have been drastically altered, the 
compensating change in force constants between un- 
like atoms is not greater than 6 % of the original single 
force constant, but the range is considerably increased. 

Table 1. Two sets of force constants which give the 
same frequencies for a diatomic one-dimensional crystal 

p fv(1 I) fp(22) fp(12) f~(11) f~(22) f~(12) 
0 1 1.0571 
1 -0.0511 
2 ½ -¼ 0"0490 
3 -0"0507 
4 -0"0060 
5 0"0024 
6 -0.0004 
7 -0"0004 

consider the problem of deriving force constants for a 
face-centered cubic structure such as nickel. First, we 
note that the eigenvectors could be determined exper- 
imentally by neutron spectroscopy without difficulty of 
principle in this instance. (Derivation of the eigenvectors 
from the measured cross section is by no means straight- 
forward when the atoms are not on centers of symmetry; 
Cochran, 1968.) For a general value of q, the eigen- 
vectors are specified by three mutually perpendicular 
unit vectors ca(q), eb(q), ec(q). The Cartesian compo- 
nents ea(xl q) etc. of ca(q) are the elements of the first 
row of a unitary 3 x 3 matrix e(w). Thus, in general 
three numbers must be known to specify the eigenvector 
matrix. This number is reduced by symmetry when q lies 
in various special directions. For example, when q is 
in the [100] direction e(q) reduces to an identity matrix. 
A qualitative measurement of the neutron-scattering 
cross section is, however, still necessary in that one 
must be able to say which frequency corresponds to 
the longitudinal mode and which corresponds to the 
(doubly-degenerate) transverse mode. Equation (8) 
now applies (with q replaced by q) and the force con- 
stant fxu(Ol) (between an atom at the origin and that 
in the lth unit call) can be determined as a coefficient 
of the three-dimensional Fourier series for D(xylq). 
The interval in q at which og,(q), ea(xlq) etc. must be 
determined depends on the range of the force con. 
stants. Suppose all nonzero force constants fzu(Ol) etc. 
can be inscribed in a regular solid (such as a cube, par- 
allelepiped, truncated octahedron, etc.) drawn about 
the origin and containing N crystallographic unit cells. 
Repetition of this regular solid produces no overlap- 
ping of the force constants. Its repetition to fill all 
space defines a superlattice whose unit cell is the regular 
solid. The lattice reciprocal to this superlattice defines 
the reciprocal sublattice of points qj for which the fre- 
quencies and eigenvectors are to be determined. N 
points of the reciprocal sublattice are in the unit cell 
of the crystallographic reciprocal lattice, that is in the 
Brillouin zone. Therefore, we have 

Practical implications 

Essentially, the same considerations apply to a three- 
dimensional crystal. Leigh et al. (1971) have considered 
the example of germanium, using their method to 
generate alternative sets of force constants which are 
equivalent in the sense discussed above. Most recent 
work on the interpretation of the phonon dispersion 
curves of covalent and ionic crystals has attempted to 
take account of the polarizability of the atoms or ions, 
usually by means of the shell model. (For a review, see 
the article by Dick, 1965.) This raises additional pro- 
blems of nonuniqueness of interpretation which are 
not considered here. In several studies of the lattice 
dynamics of metals, however, the dispersion curves 
have been fitted using force-constant models (see, for 
example, the investigation of nickel by Birgeneau, 
Cordes, Dolling & Woods, 1965). Therefore, we briefly 

m N 

fxu(Ol)=- ~ j~=~ D(xylq) cos qj.l (15) 

1"0 

0'9 

0"8 

0'7: 

0"6 

0"5 

e ( q )  
/ 

- - -  ~ "~'~',~ % I l l  - 
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- .,. / / /  e (q )  

0 >q 

Fig. 1. The functions e(q) and e'(q) for the two different sets 
of force constants given in Table 1. 
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where ! is the lattice translation between atoms labelled 
0 and l. In this instance, there are in general six force 
constants between an atom pair. For each general 
value of q: there are three frequencies and three quan- 
tities required to specify the eigenvectors. Thus, the 
relation ny=no~+ne is again satisfied, in the sense im- 
plied by this discussion. Of course, not all 6N force 
constants are independent; the number of independent 
force constants is reduced by symmetry to 4~ of the 
total, at least when the range is large, which was noted 
by Leigh et al. (1971). However, approximately the 
same factor applies to no~ and to ne. 

By analogy with the one-dimensional example which 
we considered in more detail above, it is clear that 
when the eigenvectors have not been determined, no 
solution can be unique. In the absence of other phys- 
ical information, any unitary matrix e'(q) which satis- 
fies the symmetry conditions (and there are no condi- 
tions for a general value of q) is acceptable, subject to 
considerations of continuity. While it seems improb- 
able in practice that there will ever be an equivalent set 
of force constants having a shorter range than the 

correct set, there must always be an infinite number of 
equivalent sets of greater range. 

I am grateful to members of the Solid State Group 
at Brookhaven for their hospitality and for helpful dis- 
cussions on this and other topics. 
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The Streaking of X-ray Diffraction Spots in Platelet-Shaped Polytypie Crystals 
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The c-axis oscillation X-ray diffraction photographs of platelet-shaped polytypic crystals exhibit 10.l, 
20./, etc. rows which are sharply divided into two zones, one having streaked diffraction spots and the 
other having sharp spots. Evidence and arguments have been advanced to show that this behaviour is 
due to shape-effect on the diffraction, and the observed streaking is not representative of any real disorder 
in the stacking of the layers in the crystal. 

Introduction 

The streaking of X-ray diffraction spots in the case of 
polytypic crystals has special significance since it di- 
rectly indicates the disorder, in the stacking of close- 
packed layers, in the polytype. The polytypic crystals 
have trigonal lattices, the close-packed layers being 
stacked along the c axis; often, the stacking is not 
ordered and thus a streaking along c* reciprocal-lattice 
rows, characteristic of stacking disorder, is observed in 
the disordered crystals. All the spots in the 10./, 20./, 
etc. rows of the disordered crystals are connected 
through streaks, and the amount of streaking is directly 
related to the amount of disorder, i.e. the greater the 
disorder the more pronounced the streaking. Many 
polytypic crystals, however, exhibit a curious type of 
disorder in which 10.l and other similar rows consist of 
two parts; one part comprises reflexions that show 

streaking indicative of disorder; the other part is per- 
fectly sharp, as observed in crystals exhibiting no dis- 
order. It is the purpose of this paper to point out that 
the existence of partly streaked and partly unstreaked 
reciprocal-lattice rows is due to shape-effect and does 
not represent any lattice disorder that results from 
random arrangement of stacked layers in the polytype. 

c-axis oscillation photographs of cadmium 
iodide polytype 

The polytypic crystals, like SiC, CdI2, ZnS, PbI2 etc. 
grow in the shape of platelets with fiat faces parallel to 
the (0001) plane and often have hexagonal shapes. 
The lateral extent of the platelets is a few millimetres 
while the thickness of the crystals ranges from 10 to 
100/z. Since the various polytypic modifications of a 
polytypic substance differ in the number and arrange- 
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